

Presentation Overview

- Changes in Exhaust Emissions/Composition
- Models Used for Estimating Air Quality Impacts
- Air Quality Impacts
- Conclusions/ Next Steps

Changes in Exhaust Composition

- Assumed all On-road and most Off-road Diesels trap-equipped
- Total mass of NOx emissions unchanged
- Changes in NOx speciation
 - without trap 88% NO, 10% NO2, 2% HONO
 - with trap 48% NO, 50% NO2, 2% HONO
- Sensitivity study of hydrocarbons and aldehydes (set to zero)

Models Used for Estimating Impacts

- Photochemical Ozone Model
 - Latest chemistry
 - Validated based on recent ambient monitoring
 - Will be used for future clean air plans
- Predicts summer concentrations of
 - Ozone
 - $-NO_2$
 - nitric acid
 - nitric acid-derived PM

Emissions in Southern California

(Tons/Day in 2010)

Summary of Impacts

- Ozone
 - -4-7% increase in high ozone areas (11 ppb max.)
 - State ambient standard is 90 ppb
- Nitrogen Dioxide
 - 22% increase in one small area
 - − ~5% in other areas
 - Remains below health-based ambient standard

Sensitivity to Hydrocarbon Assumptions

- Aldehydes
 - Assumed diesel aldehyde emissions = zero
 - Reduces peak ozone increase from 11 to 9 ppb
- Non-methane hydrocarbons
 - Assumed diesel NMHC emissions = zero
 - Reduced peak ozone increase from 11 to 6

Summary of Impacts (continued)

- Nitric acid (24 hour)
 - -6-12% increase (1.7 ppb)
 - Linked to reduced child lung development
- Nitric acid-derived PM (24 hour)
 - 5.5 ug/m³ increase (compared to 50 ug/m³ air quality standard)

Directly Emitted Diesel PM

(Modeled Annual Average)

Uncertainties

- Diesel Exhaust Composition Not Well Known
 - aldehydes (limited data)
 - HONO (no data)
- Possible Increase in Nitro PAH Not Evaluated
 - PAH emissions data not yet analyzed
 - Photochemical model needs revision

Conclusion

- Passive traps increase NO2 emissions significantly
- Increased NO2 emissions result in
 - Increased summer peak ozone (4-7%)
 - HC reductions cut increase by half
 - Increased summer NO₂ (but below standard)
 - Increased summer nitric acid (6-12%)
 - Increased summer nitric acid-derived PM (~10% of allowable ambient PM standard)
 - Reduced elemental carbon emissions may offset

Next Steps

- Apply aerosol model to predict daily PM effects, both summer and winter
- Revise chemistry to evaluate Nitro PAH
- Apply annual model to predict Nitric Acid/ PM annual average effects
- Improve emission estimates